對于那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬于基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養(yǎng)成良好習慣的時期,注重培養(yǎng)孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
一、重視課內聽講,課后及時進行復習.
新知識的接受和數學能力的培養(yǎng)主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學習技能,并及時審查它們以避免疑慮.首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,并試著記住而不是采用"不確定的書籍閱讀".勤于思考,對于一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習題,養(yǎng)成解決問題的好習慣.
如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標準,反復練習基本知識,然后找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規(guī)律.對于一些易于查找的問題,您可以準備一個用于收集的錯題本,編寫自己的想法來解決問題,在日常養(yǎng)成解決問題的好習慣.學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態(tài)并在考試中自由使用.
三、調整心態(tài)并正確對待考試.
首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出于基本問題,較難的題目也是出自于基本.所以只有調整學習的心態(tài),盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對于簡單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正?;蛘叱0l(fā)揮.
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態(tài),不能見考試就膽怯,調整心態(tài)很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
第一章 數和數的運算 一 概念 (一)整數1 整數的意義 自然數和0都是整數。
2 自然數 我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。 一個物體也沒有,用0表示。
0也是自然數。 3計數單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4 數位 計數單位按照一定的順序排列起來,它們所占的位置叫做數位。 5數的整除 整數a除以整數b(b ≠ 0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。 一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。
例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。一個數的倍數的個數是無限的,其中最小的倍數是它本身。
3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。 不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特征可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。 一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3*5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。例如把28分解質因數 幾個數公有的約數,叫做這幾個數的公約數。
其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:1和任何自然數互質。相鄰的兩個自然數互質。
兩個不同的質數互質。當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。如果較小數是較大數的約數,那么較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。 幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。
如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。 幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數1 小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。 一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾…… 一個小數由整數部分、小數部分和小數點部分組成。
數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。 在小數里,每相鄰兩個計數單位之間的進率都是10。
小數部分的最高分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。 2小數的分類 純小數:整數部分是零的小數,叫做純小數。
例如: 0.25 、0.368 都是純小數。 帶小數:整數部分不是零的小數,叫做帶小數。
例如: 3.25 、5.26 都是帶小數。有限小數:小數部分的數位是有限的小數,叫做有限小數。
例如: 41.7 、25.3 、0.23 都是有限小數。無限小數:小數部分的數位是無限的小數,叫做無限小數。
例如: 4.33 …… 3.1415926 …… 無限不循環(huán)小數:一個數的小數部分,數字排列無規(guī)律且位數無限,這樣的。
去百度文庫,查看完整內容> 內容來自用戶:張龍龍 第一部分:概念。
1,加法交換律:兩數相加交換加數的位置,和不變。 2,加法結合律:三個數相加,先把前兩個數相加,或先把后兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。 4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把后兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。 如:(2+4)*5=2*5+4*5 6,除法的性質:在除法里,被除數和除數同時擴大(或縮?。┫嗤谋稊担滩蛔?。
0除以任何不是0的數都得0。 簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什么叫等式等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什么叫方程式答:含有未知數的等式叫方程式。 9,什么叫一元一次方程式答:含有一個未知數,并且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
10,分數:把單位。
小學數學公式大全,第一部分: 概念。
1,加法交換律:兩數相加交換加數的位置,和不變。 2,加法結合律:三個數相加,先把前兩個數相加,或先把后兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。 4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把后兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。 如:(2+4)*5=2*5+4*5 6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
0除以任何不是0的數都得0。 簡便乘法:被乘數,乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什么叫等式 等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什么叫方程式 答:含有未知數的等式叫方程式。 9, 什么叫一元一次方程式 答:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
10,分數:把單位“1”平均分成若干份,表示這樣的一份或幾分的數,叫做分數。 11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然后再加減。 12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。 13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。 15,分數除以整數(0除外),等于分數乘以這個整數的倒數。
16,真分數:分子比分母小的分數叫做真分數。 17,假分數:分子比分母大或分子和分母相等的分數叫做假分數。
假分數大于或等于1。 18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。 20,一個數除以分數,等于這個數乘以分數的倒數。
21,甲數除以乙數(0除外),等于甲數乘以乙數的倒數。 分數的加,減法則:同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然后再加減。 分數的乘法則:用分子的積做分子,用分母的積做分母。
22,什么叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和后項同時乘以或除以一個相同的數(0除外),比值不變。
23,什么叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18 24,比例的基本性質:在比例里,兩外項之積等于兩內項之積。
25,解比例:求比例中的未知項,叫做解比例。如3:χ=9:18 26,正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。
如:y/x=k( k一定)或kx=y 27,反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x*y = k( k一定)或k / x = y 28,百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。
百分數也叫做百分率或百分比。 29,把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號。
其實,把小數化成百分數,只要把這個小數乘以100%就行了。 30,把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31,把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數后,再乘以100%就行了。
32,把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。 33,要學會把小數化成分數和把分數化成小數的化發(fā)。
34,最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。
其中最大的一個, 叫做最大公約數。) 35,互質數: 公約數只有1的兩個數,叫做互質數。
36,最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。 37,通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。
(通分用最小公倍數) 38,約分:把一個分數化成同它相等,但分子,分母都比較小的分數,叫做約分。(約分用最大公約數) 39,最簡分數:分子,分母是互質數的分數,叫做最簡分數。
40,分數計算到最后,得數必須化成最簡分數。 41,個位上是0,2,4,6,8的數,都能被2整除,即能用2進行約分。
個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43,偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44,質數(素數):一。
小學數學畢業(yè)總復習無論是對學生掌握數學知識的水平層次,還是對教師全面提高教學效益都有著舉足輕重的意義和作用。
為切實抓好總復習工作,全面提高六年級教學質量,特擬訂以下復習計劃,供大家參考。一、復習目標:1、使學生比較系統(tǒng)的牢固的掌握有關整數、小數、分數、比和比例、簡易方程等基礎知識,具有進行整數、小數、分數四則運算的能力,會使用學過的簡便算法,合理、靈活的進行計算,會解簡易方程,養(yǎng)成檢查和驗算的習慣。
2、使學生鞏固已獲得的一些計量單位的大小的表象,牢固的掌握所學的單位間的進率,能夠比較熟練的進行名數的簡單改寫。3、使學生牢固的掌握所學的幾何形體的特征,能夠比較熟練的計算一些幾何形體的周長、面積和體積,鞏固所學的畫圖、測量等技能。
4、使學生掌握所學的統(tǒng)計初步知識,能夠看和繪制簡單的統(tǒng)計圖表,并且能夠計算求平均數問題。5、使學生牢固的掌握所學的一些常見的數量關系和應用題的解答方法,能夠比較靈活的運用所學知識獨立的解答不復雜的應用題和生活中的一些簡單的實際問題。
二、復習重點:⒈整、小、分數四則運算,混合運算和簡算,解方程和解比例。⒉復合應用題、分數、百分數應用題。
⒊幾何形體知識。⒋綜合運用知識,解決實際問題。
三、復習難點:⒈使學生對所學基礎知識┄概念、性質、法則、公式以及常見數量關系系統(tǒng)化,并能融會貫通。⒉靈活解答應用題的能力和方法。
⒊準確的進行計算。四、復習關鍵:掌握“雙基”,并能靈活運用。
五、復習方法:⒈分階段復習⑴系統(tǒng)復習,24課時左右。⑵專題復習,12課時左右。
⑶綜合檢測,查漏補缺,根據具體情況而定。⒉復習主要采用講練結合,以練為主的方法進行。
六、復習時間安排:第一階段——24課時左右⒈數和數的運算(6課時)這節(jié)重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上。⑴、數的意義、數的讀法和寫法⑵、數的改寫、數的大小比較⑶、數的整除、分數小數的基本性質⑷、四則運算的意義和法則⑸、運算定律和簡便算法⑹、四則混合運算⒉代數的初步知識(3課時左右)本節(jié)重點內容應放在掌握簡易方程及比和比例的 辨析。
⑴、用字母表示數⑵、簡易方程⑶、比和比例⒊應用題(7課時左右)這節(jié)重點放在應用題的分析和解題技能的發(fā)展上,難點內容是分數應用題。⑴、簡單應用題(1課時)⑵、復合應用題(2課時)⑶、列方程解應用題(2課時)⑷、用比例知識解應用題(2課時)⒋、量的計量(2課時左右)本節(jié)重點放在名數的改寫和實際觀念上。
⑴、長度、面積、體積、重量、時間單位⑵、名數的改寫⒌、幾何初步知識(5課時左右)本節(jié)重點放在對特征的辨析和對公式的應用上。⑴、平面圖形的認識⑵、平面圖形的周長和面積⑶、立體圖形的認識⑷、立體圖形的面積和體積⒍、簡單的統(tǒng)計(2課時左右)本節(jié)重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題。
⑴、平均數⑵、統(tǒng)計表⑶、統(tǒng)計圖 注:在復習第一階段中,需要穿插4份綜合練習。第二階段:專題 復習訓練(12課時左右)⒈ 四則混合運算、簡算、解方程、解比例的強化訓練。
⒉幾何形體公式的實際綜合應用。⒊各類應用題的訓練。
⒋填空題和判斷題的強化。第三階段——根據具體情況而定。
綜合練習和評講,及時查漏補缺。七、復習中的注意點:1、注意啟發(fā),引導學生進行進行合理的整理和復習。
2、注重“雙基”訓練,夯實知識功底。3、以教材為本,扣緊大綱。
4、加強反饋,注意因材施教。5、力求作到上不封頂,下要保底。
八、總復習復習措施:1、在復習分塊章節(jié)時,重視基礎知識的復習,加強知識之間的聯系,使學生在理解上進行記憶。比如:基礎概念、法則、性質、公式這類。
在課堂上在系統(tǒng)復習中糾正學生的錯誤,同時防止學生機械的背誦;對于計量單位要求學生在記憶時,理順關系。2、在復習基礎知識的同時,緊抓學生的能力。
⑴、在四則混合運算方面,既要提高學生計算的正確率,又要培養(yǎng)學生善于利用簡便方法計算。利用自習與課后輔導時間對學生進行多次的過關練習。
⑵、在量的計量和幾何初步知識上,多利用實物的直觀性培養(yǎng)學生的空間想象能力,利用習題內型的衍射性指導學生學習。⑶、應用題中著重訓練學生的審題,分析數量關系,尋求合理的簡便的方法,講練結合,歸納總結,抓訂正、抓落實。
3、在復習過程中注意啟發(fā),加強導優(yōu)輔差。對學習能力較差,基礎薄弱的學生,要求盡量跟上復習進度,同時開“小灶”,利用課間與課后時間,按最低的要求進行輔導。
而對于能力較強,程度較好的學生,鼓勵他們多看多想多做,老師隨時給他們提供指導和幫助。要做到突出尖子生,重視學困生,努力提高中等生。
4、在復習期間,引導學生主動自覺的復習,學習系統(tǒng)化的歸納整理,對于學生多采用鼓勵的方法,調動學習的積極性。5、加強審題訓練,提高解題能力。
在復習時,教師應切實加強學生認真讀題,審題習慣的培養(yǎng)。讓學生在讀題時讀清、讀透。
6、在復習當中,對于學生的掌握情況要及時做到心中有數,認真與學生進行反饋交流。
希望對你有幫助,全都是自己打出來的哦小學數學?重點?其實很簡單,只要上課聽懂重點有三個一個是代數,第二個平面幾何和立體幾何,第三個是統(tǒng)計與一些雜題。
代數主要包括方程,還有一些數學的基礎,例如什么質數合數什么的。特別是方程,要重點復習。
平面幾何主要包括小學學的基礎圖形,還要記住基礎概念,例如什么三角形具有穩(wěn)定形,還要背公式,最總要的一點是靈活靈用。立體幾何,這是小學的難點,建議多做題。
統(tǒng)計等,這些都很簡單,可以簡要看一看1、長方形的周長=(長+寬)*2 C=(a+b)*2 2、正方形的周長=邊長*4 C=4a 3、長方形的面積=長*寬 S=ab 4、正方形的面積=邊長*邊長 S=a.a= a 5、三角形的面積=底*高÷2 S=ah÷2 6、平行四邊形的面積=底*高 S=ah 7、梯形的面積=(上底+下底)*高÷2 S=(a+b)h÷2 8、直徑=半徑*2 d=2r 半徑=直徑÷2 r= d÷2 9、圓的周長=圓周率*直徑=圓周率*半徑*2 c=πd =2πr 10、圓的面積=圓周率*半徑*半徑 ?=πr 11、長方體的表面積=(長*寬+長*高+寬*高)*2 12、長方體的體積 =長*寬*高 V =abh 13、正方體的表面積=棱長*棱長*6 S =6a 14、正方體的體積=棱長*棱長*棱長 V=a.a.a= a 15、圓柱的側面積=底面圓的周長*高 S=ch 16、圓柱的表面積=上下底面面積+側面積 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圓柱的體積=底面積*高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圓錐的體積=底面積*高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、長方體(正方體、圓柱體)的體 1、每份數*份數=總數 總數÷每份數=份數 總數÷份數=每份數 2、1倍數*倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3、速度*時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價*數量=總價 總價÷單價=數量 總價÷數量=單價 5、工作效率*工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、加數+加數=和 和-一個加數=另一個加數 7、被減數-減數=差 被減數-差=減數 差+減數=被減數 8、因數*因數=積 積÷一個因數=另一個因數 9、被除數÷除數=商 被除數÷商=除數 商*除數=被除數 小學數學圖形計算公式 1 、正方形 C周長 S面積 a邊長 周長=邊長*4 C=4a 面積=邊長*邊長 S=a*a 2 、正方體 V:體積 a:棱長 表面積=棱長*棱長*6 S表=a*a*6 體積=棱長*棱長*棱長 V=a*a*a 3 、長方形 C周長 S面積 a邊長 周長=(長+寬)*2 C=2(a+b) 面積=長*寬 S=ab 4 、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長*寬+長*高+寬*高)*2 S=2(ab+ah+bh) (2)體積=長*寬*高 V=abh 5 三角形 s面積 a底 h高 面積=底*高÷2 s=ah÷2 三角形高=面積 *2÷底 三角形底=面積 *2÷高 6 平行四邊形 s面積 a底 h高 面積=底*高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑*∏=2*∏*半徑 C=∏d=2∏r (2)面積=半徑*半徑*∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長*高 (2)表面積=側面積+底面積*2 (3)體積=底面積*高 (4)體積=側面積÷2*半徑 10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積*高÷3 總數÷總份數=平均數 和差問題 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題 和÷(倍數-1)=小數 小數*倍數=大數 (或者 和-小數=大數) 差倍問題 差÷(倍數-1)=小數 小數*倍數=大數 (或 小數+差=大數) 植樹問題 1 非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那么: 株數=段數+1=全長÷株距-1 全長=株距*(株數-1) 株距=全長÷(株數-1) ⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么: 株數=段數=全長÷株距 全長=株距*株數 株距=全長÷株數 ⑶如果在非封閉線路的兩端都不要植樹,那么: 株數=段數-1=全長÷株距-1 全長=株距*(株數+1) 株距=全長÷(株數+1) 2 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距*株數 株距=全長÷株數 盈虧問題 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題 相遇路程=速度和*相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題 追及距離=速度差*追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題 順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量*100%=濃度 溶液的重量*濃度=溶質的重量 溶質的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本 利潤率=利潤÷成本*100%=(售出價÷成本-1)*100% 漲跌金額=本金*漲跌百分比 折扣=實際售價÷原售價*100%(折扣利息=本金*利率*時間 稅后利息=本金*利率*時間*(1-20%) 時間單位換算 1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:。
聲明:本網站尊重并保護知識產權,根據《信息網絡傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個月內通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:3.959秒