數學(xué)建模應當掌握的十類(lèi)算法
1.蒙特卡羅算法
該算法又稱(chēng)隨機性模擬算法,是通過(guò)計算機仿真來(lái)解決問(wèn)題的算法,同時(shí)可以通過(guò)模擬可以來(lái)檢驗自己模型的正確性,是比賽時(shí)必用的方法。
2.數據擬合、參數估計、插值等數據處理算法
比賽中通常會(huì )遇到大量的數據需要處理,而處理數據的關(guān)鍵就在于這些算法,通常使用Matlab作為工具。
3.線(xiàn)性規劃、整數規劃、多元規劃、二次規劃等規劃類(lèi)問(wèn)題
建模競賽大多數問(wèn)題屬于最優(yōu)化問(wèn)題,很多時(shí)候這些問(wèn)題可以用數學(xué)規劃算法來(lái)描述,通常使用Lindo、Lingo軟件實(shí)現。
4.圖論算法
這類(lèi)算法可以分為很多種,包括最短路、網(wǎng)絡(luò )流、二分圖等算法,涉及到圖論的問(wèn)題可以用這些方法解決,需要認真準備。
5.動(dòng)態(tài)規劃、回溯搜索、分治算法、分支定界等計算機算法
這些算法是算法設計中比較常用的方法,很多場(chǎng)合可以用到競賽中。
6.最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò )、遺傳算法
這些問(wèn)題是用來(lái)解決一些較困難的最優(yōu)化問(wèn)題的算法,對于有些問(wèn)題非常有幫助,但是算法的實(shí)現比較困難,需慎重使用。
7.網(wǎng)格算法和窮舉法
網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競賽題中有應用,當重點(diǎn)討論模型本身而輕視算法的時(shí)候,可以使用這種暴力方案,最好使用一些高級語(yǔ)言作為編程工具。
8.一些連續離散化方法
很多問(wèn)題都是實(shí)際來(lái)的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非常重要的。
9.數值分析算法
如果在比賽中采用高級語(yǔ)言進(jìn)行編程的話(huà),那一些數值分析中常用的算法比如方程組求解、矩陣運算、函數積分等算法就需要額外編寫(xiě)庫函數進(jìn)行調用。
10.圖象處理算法
賽題中有一類(lèi)問(wèn)題與圖形有關(guān),即使與圖形無(wú)關(guān),論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問(wèn)題,通常使用Matlab進(jìn)行處理。
1.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個(gè)實(shí)數大小順序和運算性質(zhì)的直接應用,比較法可分為差值比較法(簡(jiǎn)稱(chēng)為求差法)和商值比較法(簡(jiǎn)稱(chēng)為求商法)。 2.綜合法利用已知事實(shí)(已知條件、重要不等式或已證明的不等式)作為基礎,借助不等式的性質(zhì)和有關(guān)定理,經(jīng)過(guò)逐步的邏輯推理,最后推出所要證明的不等式,其特點(diǎn)和思路是“由因導果”,從“已知”看“需知”,逐步推出“結論”。
3.分析法分析法是指從需證的不等式出發(fā),分析這個(gè)不等式成立的充分條件,進(jìn)而轉化為判定那個(gè)條件是否具備,其特點(diǎn)和思路是“執果索因”,即從“未知”看“需知”,逐步靠攏“已知”。
4.反證法有些不等式的證明,從正面證不好說(shuō)清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質(zhì),推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有“至多”、“至少”、“不存在”、“不可能”等詞語(yǔ)時(shí),可以考慮用反證法。 5.換元法換元法是對一些結構比較復雜,變量較多,變量之間的關(guān)系不甚明了的不等式可引入一個(gè)或多個(gè)變量進(jìn)行代換,以便簡(jiǎn)化原有的結構或實(shí)現某種轉化與變通,給證明帶來(lái)新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用于條件不等式的證明,當所給條件較復雜,一個(gè)變量不易用另一個(gè)變量表示,這時(shí)可考慮三角代換,將兩個(gè)變量都有同一個(gè)參數表示。此法如果運用恰當,可溝通三角與代數的聯(lián)系,將復雜的代數問(wèn)題轉化為三角問(wèn)題根據具體問(wèn)題,實(shí)施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對于含有的不等式,由于|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱(chēng)式(任意交換兩個(gè)字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進(jìn)行換元,其目的是通過(guò)換元達到減元,使問(wèn)題化難為易,化繁為簡(jiǎn)。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進(jìn)行換元。 6.放縮法放縮法是要證明不等式A<B成立不容易,而借助一個(gè)或多個(gè)中間變量通過(guò)適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個(gè)分式大小的比較。常用的放縮技巧有:①舍掉(或加進(jìn))一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進(jìn)行放縮。
一、證明方法
設N為任一大于6的偶數,Gn為不大于N/2的正整數,則有:
N=(N-Gn)+Gn (1)
如果N-Gn和Gn同時(shí)不能被不大于√N的所有質(zhì)數整除,則N-Gn和Gn同時(shí)為奇質(zhì)數。設Gp(N)表示N-Gp和Gp同時(shí)為奇質(zhì)數的奇質(zhì)數Gp的個(gè)數,那么,只要證明:
當N>M時(shí),有Gp(N)>1,則哥德巴赫猜想當N>M時(shí)成立。
二、雙數篩法
設Gn為1到N/2的自然數,Pi為不大于√N的奇質(zhì)數,則Gn所對應的自然數的總個(gè)數為N/2。如N-Gn和Gn這兩個(gè)數中任一個(gè)數被奇質(zhì)數Pi整除,則篩去該Gn所對應的自然數,由此,被奇質(zhì)數Pi篩去的Gn所對應的自然數的個(gè)數不大于INT(N/Pi),則剩下的Gn所對應的自然數的個(gè)數不小于N/2-INT(N/Pi),與Gn所對應的自然數的總個(gè)數之比為R(Pi):
R(Pi)≥(N/2-INT(N/Pi))/(N/2)≥(1-2/Pi)*INT((N/2)/Pi)/((N/2)/Pi) (2)
三、估計公式
由于所有質(zhì)數都是互質(zhì)的,可應用集合論中獨立事件的交積公式,由公式(2)可得任一偶數表為兩個(gè)奇質(zhì)數之和的表法的數量的估計公式:
Gp(N)≥(N/4-1)*∏R(Pi)-1≥(N/4-1)*∏(1-2/Pi)*∏(1-2Pi/N)-1 (3)
式中∏R(Pi)表示所有不大于√N的奇質(zhì)數所對應的比值計算式的連乘。
四、簡(jiǎn)單證明
當偶數N≥10000時(shí),由公式(3)可得:
Gp(N)≥(N/2-2-∑Pi)*(1-1/2)*∏(1-2/Pi)-1
≥(N-2*√N)/8*(1/√N)-1=(√N-2)/8-1≥11>1 (4)
公式(4)表明:每一個(gè)大于10000的偶數表為兩個(gè)奇質(zhì)數之和至少有11種表法。
經(jīng)驗證明:每一個(gè)大于4且不大于10000的偶數都可表為兩個(gè)奇質(zhì)數之和。
最后結論:每一個(gè)大于4的偶數都可表為兩個(gè)奇質(zhì)數之和。
1 過(guò)兩點(diǎn)有且只有一條直線(xiàn) 2 兩點(diǎn)之間線(xiàn)段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直 6 直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短 7 平行公理 經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行 8 如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行 9 同位角相等,兩直線(xiàn)平行 10 內錯角相等,兩直線(xiàn)平行 11 同旁?xún)冉腔パa,兩直線(xiàn)平行 12兩直線(xiàn)平行,同位角相等 13 兩直線(xiàn)平行,內錯角相等 14 兩直線(xiàn)平行,同旁?xún)冉腔パa 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內角和定理 三角形三個(gè)內角的和等于180° 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上 29 角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線(xiàn)等于斜邊上的一半 39 定理 線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上 41 線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn) 44定理3 兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上 45逆定理 如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng) 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長(cháng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內角和等于360° 49四邊形的外角和等于360° 50多邊形內角和定理 n邊形的內角的和等于(n-2)*180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線(xiàn)間的平行線(xiàn)段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對角線(xiàn)互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線(xiàn)互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2 矩形的對角線(xiàn)相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對角線(xiàn)相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角 66菱形面積=對角線(xiàn)乘積的一半,即S=(a*b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線(xiàn)互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角 71定理1 關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的 72定理2 關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分 73逆定理 如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng) 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對角線(xiàn)相等 76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對角線(xiàn)相等的梯形是等腰梯形 78平行線(xiàn)等分線(xiàn)段定理 如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段 相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等 79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰 80 推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第 三邊 81 三角形。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:4.136秒